Monday, August 3, 2015

Gas Chromatagraph Mass Spectrometry

Gas chromatography–mass spectrometry (GC-MS) is an analytical method that combines the features of gas-chromatography and mass spectrometry to identify different substances within a test sample. Applications of GC-MS include drug detection, fire investigation, environmental analysis, explosives investigation, and identification of unknown samples. GC-MS can also be used in airport security to detect substances in luggage or on human beings. Additionally, it can identify trace elements in materials that were previously thought to have disintegrated beyond identification. GC-MS has been widely heralded as a "gold standard" for forensic substance identification because it is used to perform a specific test. A specific test positively identifies the actual presence of a particular substance in a given sample. A non-specific test merely indicates that a substance falls into a category of substances. Although a non-specific test could statistically suggest the identity of the substance, this could lead to false positive identification. The use of a mass spectrometer as the detector in gas chromatography was developed during the 1950s after being originated by James and Martin in 1952. These comparatively sensitive devices were originally limited to laboratory settings. The development of affordable and miniaturized computers has helped in the simplification of the use of this instrument, as well as allowed great improvements in the amount of time it takes to analyze a sample. In 1964, Electronic Associates, Inc. (EAI), a leading U.S. supplier of analog computers, began development of a computer controlled quadrupole mass spectrometer under the direction of Robert E. Finnigan. By 1966 Finnigan and collaborator Mike Uthe's EAI division had sold over 500 quadrupole residual gas-analyzer instruments. In 1967, Finnigan left EAI to form the Finnigan Instrument Corporation along with Roger Sant, T. Z. Chou, Michael Story, and William Fies. In early 1968, they delivered the first prototype quadrupole GC/MS instruments to Stanford and Purdue University. When Finnigan Instrument Corporation was acquired by Thermo Instrument Systems (later Thermo Fisher Scientific) in 1990, it was considered "the world's leading manufacturer of mass spectrometers". In 1996 the top-of-the-line high-speed GC-MS units completed analysis of fire accelerants in less than 90 seconds, whereas first-generation GC-MS would have required at least 16 minutes. By the 2000s computerized GC/MS instruments using quadrupole technology had become both essential to chemical research and one of the foremost instruments used for organic analysis. Today computerized GC/MS instruments are widely used in environmental monitoring of water, air, and soil; in the regulation of agriculture and food safety; and in the discovery and production of medicine.

No comments:

Post a Comment